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1. Introduction

The prediction capability of a turbulence model depends on how effec-
tively one can prescribe the Reynolds stress distribution in closing the system
of equations. The simplest and most widely used has been the Boussinesq
treatment of the Reynolds stresses. As is now well known, Boussinesq hypo-
thesis holds only when the strain rates are fairly small. The main reason
being that by construction the Boussinesq formula implies that the principal
axes of the Reynolds stress tensor are parallel to the principal axes of the
strain rate tensor so that any change in the strain rate is directly felt in
the stresses. This instantaneous change of the Reynolds stresses with
the strain rates is not supported by the experimental observations, because
the Reynolds stresses being due to the vorticity fluctuations require some
time to adjust to the new strain rates. To overcome these short comings,
one must either abandon the Boussinesq hypotheéis altogether and solve the six
Reynolds transport equations which is costly in terms of computer time or
improve upon the hypothesis itself.

In this paper we follow a recent analysis of Rodil to construct an im-
proved second-order version of the Boussinesq hypothesis. An algebraic rela-

.

tion for the turbulent stresses has been obtained through a consideration of o
the transport equations of the Reynolds stresses. Consequently, the resulting <

relation has the necessary influence of the convective and diffusive trans-

port effects of a turbulence stress field.

This paper is an outgrowth of a current rescarch supported by the United o
States Air Force Office of Scientific Resecarch, Grant No. AFOSR-76-2922, o
Indes category: Boundary Layers and Convective Heat Transfer - Turbulent

* Associate Professor, Acrophysics and Acrospace Engincering
%% (Craduate Nescarch Assistaant

el e it 1

{



=

m—— o
|
1
-y 1
ol
S———— Y
e ¥ Fas 2
RELATEON FOR THE ’ e
e TN ~SES 8  totecin clsa [
: ..,c.\.... "PORT MUME SR
NS — . SR il
/ 1 s © g ] )6
! X — e o """?“’A""r 5—”"?‘” T NUMBER(S)
2. U./Warsi | oo VR i
8. B./Amlicke \ V/}F—,,MSR aé)-zgzz %
e m————— e e S SRSV LRt : . i e
9. PERFORMING CRGANIZATION NAME AND ADDRESS 10 nbn!l L!_r,'M.NTx PROJE
. o~ s 8 S REA WORK UM NUMBE F
Mississippi State University v 7 it
A hysics and Aerospace Engineering il 61102F — T
Mississ Mississi 2 ,) 2 ; o ~’ j -
ississippi State, ..1‘.;,1 sippi 976‘”_‘_ 1’7€ l 2%4’{&3-- ‘/// </
1 OLLING OF FICE NAME AND AL : iy ERC .
Air Force Office of qu'ntlflc Research (NM)
Bldg 410, Bolling AFB DC 20332 =
4 MONITORING AGENCY NAME & ADDRESS(II differ tice) | 15. SEC v..RI‘YCLw.tOm) - S
{ UNCLASSIFIED
2 ICATION DOWNGRADING
| £
i Y 1k 2 t I 1 d.
13. KEY WoF —entinue an reverse side il necessary and identily by block number) BRI e B e o o]
Turbulence
Reynolds Stress
Turbulence Modeling
Closure Hypotheses
“20_- ':‘au’-'A?'_'\r (Co 1‘in.:e <;'1 rev ;r(e ;l-a—e—-!?-:;z::s—ar_;}'_nd |c’e:'1hf, by biock number) A
In this paper an algebraic relation for the Reynolds Strecsses has been obtained
through a consideration of the transport equations of the Reynolds Stresses.
This analysis provides a second-order approximation to the Boussinesq eddy
viscosity hypothesis. The basic assumption of the analysis is that the
derivatives of the ratio of the Reynolds Stresses and energy is small in
comparison with the other terms.
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2. Analysis

—

The transport equations of the Reynolds stresses (—uiuj)and the equation

i

of turbulence energy (e = %—uiui)for an incompressible flow respectively are

dt
B 5 SO i e
s Pij + Qij + Dij cij . Tij uiuj (1)
de _ . :
Tt P+D € . (2)

where g% is the substantive derivative based on the mean velocity components

€. . respectively are the production, diffusion and dissipation

Ugs Pyge Dyye €45
of the Reynolds stresses, Qij is the pressure-strain correlation, while P,

D and € respectively are the production, diffusion and dissipation of the
turbulence enérgy. In this paper we have utilized the modeling of the terms
Qij’ Dij’ Eij and D as reported in references 1 and 2, which on using the
summation convention on repeated indices are

Q.= fli (2.€ 8., =%, + "(22 B Py 3
5y S SR S e e S )

3 arij C;Z azi,

D = o Al
15 (“éxp e e %)

a e :
®13 T3 ®7ij o 5
3 Je s de
D= il g

3%, (”axk e ke Bx;) (6)

where cpr Y and cs are empirical constants, and v the kinematic viscositv.

The terms P, and ¢ are
ij’ P < e

v, v, ¥
P, - - o e
137" Y TR | -w/ Q)
b adh v kil (8)
‘> -: ii ‘\s. 3 ] : oS! 1
i iyl ' - !
2 . (<) ]
\ - -) ;'v tisiarnen
—“\Ql ““Introducing the notation { TRIBUTION/AVAIAR Y Cace |
.l. - : N - i Lyt 3
15" tay { '11' (10) ‘
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and arranging terms in D, ., we have
: St il se 2Ty
D,, mv—— (e —=) +v + DT, ,
ij Bxk 9% 3xk ?*k ij
p== 2
c (e) aT c — 9T
d S ij S Jde ij
*3 { e ek, |- & o (11)
% 2 e
Introducing (11), the identity
dt dT, . =
i BE e SRR
dt dt ij dt

and Eq. (2) in Eq. (1) and neglecting the derivatives of Tij in comparison

with the other terms, we obtain

- & = -
Tij(P ) Pij + Qij Eij (12)
On substituting (3) and (5) in (12) we obtain :
2 2
== 0 e
Tij 3 13 + Yo(Pij/e 3 OijP/C)/(d1 + P/g) (13)
where b e 1~ vy and d1 = cl-l
We now introduce the following notation
2 1 1 BUi
PR E e s By '6"3:?; e

where 8 is the vorticity-density and wy is the fluctuating vorticity compo-

nent. It follows directly from the Kolmogorov-Saffman equation of energy
(Ref. 3) that the dissipation of energy € is given by

€ =eb (15)
Using (14) and (15) in (7) and (8) we get

! Pij/e = (T

Ple = -Tki M. (17)

A\
ik .Ijk + Tjk Mik) (16)

If we now substitute (16) and (17) in (13) then we get a system of

nonlincar simul taneous algebraic equations for the determination of Tij'

Radil in his derivation did not use the expansion (17). but retained P/e

as o a parameter and solved (13) for T Since P/e contains all T

iy 1j's’

we follow an approach different from Rodi, which in the first place establi-
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shes the validity of the Boussinesq hypothesis, and in the second place

yields an improved algebraic relation for T

i1’

Equation (13) can be written in various iterative forms, however, the

following form is chosen because it yields various approximations in a direct

fashion.
(n+1) (n) (n)
LV R o
2 , (n) (n) (n) 2 (n)
=28 j(d M, ) + ¥, (- T, Mjk - Tjk Moy +-§ Mk,) (18)

where n is the iteration index.

For the zeroceth approximation we take

O
ij 301
and by using the continuity equation )Sj = 0, we get
(1) 2. . 2o
=™ =8 = 3 + M
s L Y =
where
PR
=== tant. (20)
@ 3d1 cons

Equation (19) is the usual Boussinesq formulation which has also been
used among others by Kolmogorov4 and Saffman3. It is only a first approxi-
mation and is expected to hold in situations where the mean flow is not chang-
ing rapidly.

To obtain the second approixmation, we introduce (19) in (18) and neglect
terms of the third-order in Mij to have

AN T
1] *13 - u.o (;.ij + .Iji)
4

q_[(M o “L )W + (W + Mkj)Mik

+

rolw ulN

2
-S4 O + M M 21
9 13( ih uk)lk.] L)
c:tion (21) provides the second approximation to the Reynolds stresses and
voexpected to hold from lew to moderate variations of the straia rates.

By following a philosophically different approach Saffman3 has also

Shaioed an expression similar to (21) which in our notation is
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XY

2y _ 2 g 2
le A1 by = @ (Mij + M, )y +
+3 [(\x +Mk1) Mj + (M +M.k )\1
{ + N’kj)Mki + (Mki + !~1ik).‘-1kj} ] (22)

where a and A are constants. Comparing (21) and (22) we find that though both

are in dimensional agreement, they diffeJ in their last terms. It must be noted

that 121) is a consequence of the complete Navier-Stokes equations while

(22) is an attempt at finding a relaxation model to overcome the diffici-
encies of the first approximation.
A comparison of (21) and (Z2) yields the values of the constant aoappearing

in (21). Thus we have \

The value e 0.3 has been used by Saffman3 and also by Pope and White- 1

laws, but from (20) we find that the value 10 = 0.3 is not consistent with the
values : 0.4 and dl = 0.5 as proposed in Ref. 2. However, if we take

the value dl = 1.86 = f% - 1) as mentioned by Rotta6 and i 0.3 then

a, = 0.33, which is near to the value used by Saffman. TFor the sake of

definiteness we therefore select the value e " 0:30dn Eq. (20 ).

For two-dimensional mean flow Eq. (21) vields the folleowing expres

ssions

for the normal and shear stresses:




On the other hand Saffman's equations (22) yields

v 2 ¢®

1 =Ty RAGL, F M), - Hy) (24a2)
Tzz(lz) : Tzz(l) =AMy, + M) 0, - Myy) (24b)
LSS WA (24c)
Tl & Vg My My g = My faad)

where A is an emperical constant. Thus though the shear stresses, Eqs. (23d)
and (24d),have the same distributions, the normal stresses, Eqs. (23a-c) and

Eqs. (24a-c), have entirely different distributions.

In the wall region Mll = M22 = MZI—L;and
e S
a
. (o]
so that Eqs. (23) become
(2)
Pl :
P N (25a)
@ _2_ .2
Yy TR (25b)
2y 2 2
Tl (256
(3 S 5
LV S (254)

Equations (24) become

(2) 2

2 _
1, - 2 = 3/ (262)
1,,8 - 2 = cape 2 (260)
2 _2 .
T33 e (26¢)
2
T]2(~) Lo —ﬂo (26ﬁ)

d

Salfman” now takes X = .02 to match the three normal stresses with the expoeri-
nental data which roughly are in the ratio 4:2:3. Numerical values based on
(25) and (26) and the experimental values as quoted in Ref. 7 are tabulated

below.

(1}




Table 1 Comparison of the Near-Wall Data

Present (2=0.3) Present (a=0.34) Saffman3 ' Reference

2y _ 32
Tll 3 0.18 0.23 0.22 0.32
s &) F = i
Ty - 0.09 0.12 0.22 0.18
r33(2) 3 % -0.09 -0.12 0.0 -0.10

(2) 1
le -0.30 -0.34 -0.30 -0.34 |

A comparison of values in Table 1 shows that uo=0.34 in the present model
may be more suitable than a°=0.3. However, any adjustment of the constant
a or the actual prediction capability of the proposed second-order algebraic

relation (21) can be ascertazined only after it has been used in the calcula- 1

tion of various turbulent flows.

Based on the works of Launder et al2 and on the most recent review by
Reynold58 it is possible to establish in advance the limitations of the second
approximation, viz. Eq. (21). For example, it may be observed that in the wall

gg) and T3§2) are equal (Egqs. 25b,c). This result

region the normal stresses T
is in exact conformity with Eqs. (14) of Ref. 2 in which Launder et al have
shown that in any simpler pressure-strain hypothesis there is no direct
production of T22 and T33 and therefore they tend to be equal. Thus it can
roughly be stated that the amount of approximation involved in (21) is the same

as obtaining the Reynolds stresses through the six Reynolds stress transport

equations by using a simpler pressure~strain relation.




3. Conclusion

The purpose of this paper has been to demonstrate that the Boussinesq
eddy viscosity hypothesis and its higher approximations are a direct conse-
quence of the Reynolds stress transport equations. The basic assumption of
the analysis is that the derivatives of the terms Tij = i%i are small in
comparison with the other terms in the rate equation for ?ij' Bgcause of
the implicit effects of the convection and diffusion in the second approxi-
mation, the simple algebraic relation (21) is expected to provide a basis
for the prediction of complex flows.

It is important to mention that the validity of Eq. (13), which rests
on the assumption that the rate of change of Tij be small in comparison with
the other terms is not new either in the paper by Rodi* or in the present one.
This idea § has earlier been used by Donaldson® who called it as the "super-

equilibriun" limit. As &n application, Donaldson obtained all the Rewrnc

w

-

ba

stress terms algebraically for a line vortex.

8 The authors are grateful to the revizwer for bringing this to our

attention.
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